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Abstract: We demonstrate how HQET and the Step Scaling Method for B-physics, pio-

neered by the Tor Vergata group, can be combined to reach a further improved precision.

The observables considered are the mass of the b-quark and the Bs-meson decay con-

stant. The demonstration is carried out in quenched lattice QCD. We start from a small

volume, where one can use a standard O(a)-improved relativistic action for the b-quark,

and compute two step scaling functions which relate the observables to the large volume

ones. In all steps we extrapolate to the continuum limit, separately in HQET and in QCD

for masses below mb. The physical point mb is then reached by an interpolation of the

continuum results in 1/m. The essential, expected and verified, feature is that the step

scaling fuctions have a weak mass-dependence resulting in an easy interpolation to the

physical point. With r0 = 0.5 fm and the experimental Bs and K masses as input, we

find FBs = 191(6) MeV and the renormalization group invariant mass Mb = 6.88(10) GeV,

translating into mb(mb) = 4.42(6) GeV in the MS scheme. This approach seems very

promising for full QCD.
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1. Introduction

It has long been realized that B-meson decays and mixing have a significant potential

for the search for physics beyond the Standard Model of particle physics. Unfortunately,

the comparison of experimental results from BaBar and Belle to the Standard Model has

not yet revealed such effects. An even higher precision in both future experiments and

the corresponding “predictions” of the theory is required if we want to get hints for new

particles or interactions in this way.1

The most promising method for the computation of QCD matrix elements with at

most one hadron in initial and final states is lattice QCD. Contrary to what is sometimes

reported, it is, however, a very non-trivial task to achieve precisions at the (few) percent

level, keeping all systematic uncertainties under control. This is particularly so in B-

physics, where the difficulty of simulating light quarks with masses that make contact to

the regime where chiral perturbation theory is applicable meets the additional requirement

of correctly describing the physics of the heavy b-quark. The former requires lattices of a

large enough physical size, say 2 − 3 fm across and the latter a small lattice spacing, a, or

the control of an effective theory (see [1 – 5] for more detailed accounts of the difficulties

1In fact the situation on the theory side is not sufficiently clear to exclude that experiments have found

new physics already. The point is that hadronic matrix elements of B-mesons are difficult to compute. It

could thus be that some matrix element (B-factor or other) which has been extracted from fits to the uni-

tarity triangle is actually in disagreement with the true matrix elements in QCD. Improved determinations

of these matrix elements are hence of interest even without an increase of precision of the experiments.
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and recent progress). In this letter we exclusively discuss a method to cope with the

discretization errors associated with the heavy quark dynamics. The light quark is simply

taken to be the strange quark and for the purpose of testing the methodology we work

in the quenched approximation. The light (dynamical) quark simulations are an entirely

separate issue, where fortunately significant progress has recently been made [6 – 14].

The basic idea of the approach investigated here is the fact that b-quarks can be

simulated (quite) straightforwardly in a space-time volume with a linear extent of L0 =

O(0.5 fm) [15, 16]. In such a volume the lattice spacing can be chosen small enough such

that observables can be computed with a relativistic action for the heavy quark. The

continuum limit is reachable by a short, controlled, extrapolation. Starting from this

simple idea, two different roads have been taken in the past [17 – 19] and a third one has

recently been explored [20].

In the first the (continuum) observables in the small volume serve to determine the

parameters of HQET non-perturbatively and then the physical (large volume) matrix ele-

ments are computed in this effective theory. By including 1/mb-corrections a good overall

precision is attainable [19].

In the second way, one remains in the relativistic theory, and computes the finite size

effects of the observables iteratively (L0 → L1 = sL0 → L2 = s2L0 . . .). As one increases

the volume also the lattice spacing is increased and one has to reduce the mass, mh, of the

actually simulated quark to remain with amh ≪ 1. The physical mass of the b-quark is

then reached by an extrapolation.

Here we demonstrate how the two approaches can be combined by constraining the

extrapolation to the physical quark mass with calculations in the effective theory; extrap-

olations are turned into interpolations and an even higher precision as well as confidence

is reached.

2. Strategy

We are interested in computing an observable O, which, in addition to the light quark

masses, depends on the mass, mh, of a heavy quark. Its exact definition will be mentioned

when it becomes relevant. In a Monte Carlo computation the observable depends in ad-

dition on the linear extent L of the simulated space-time volume. This finite size effect

is negligible when L is large enough, which we here assume to be the case for L ≥ LN .

Following [21, 22], we express O as a product of factors,

O(mh, L∞) = O(mh, L0)
O(mh, L1)

O(mh, L0)
· · · O(mh, LN )

O(mh, LN−1)
. (2.1)

Here L0 is chosen small enough such that with an affordable effort lattices with a spacing

a ≪ 1/mh can be used and the continuum limit can be reached by an extrapolation

of O computed with a relativistic O(a)-improved action. For the b-quark this means

that a ≈ 0.012 fm can be used. In a small volume the details of the topology, boundary

conditions and the exact choice of observables are relevant. We here note only that choosing

Schrödinger functional boundary conditions makes such numerical computations affordable

also when dynamical quarks are included [23]. We come back to these details in section 3.
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The remaining factors in eq. (2.1) describe the dependence on L. They are called step

scaling functions. In their original version [24], they depended only on Li (or equivalently

a renormalized coupling ḡ(Li)), but here we have an additional dependence on the mass of

the heavy quark. It is convenient to replace the latter by the dimensionless observable

x ≡ 1

LmPS(mh, L)
=

1

Lmh
+ O

(

1
(Lmh)2

)

, (2.2)

constructed from a finite volume pseudoscalar heavy-light mass, mPS. It will then also be

used as the HQET expansion parameter instead of the inverse of the heavy quark mass.

The indicated HQET expansion assumes that L is kept fixed; see e.g. [17, 5] for more

details; it will be used later. First we define the generic step scaling function

σO(x,L) ≡ O(mh, L)

O(mh, L/s)
, (2.3)

(with x from eq. (2.2)) where the scale factor s as well as any other quark masses are kept

fixed and are not indicated explicitly.

In particular, the step scaling function of the pseudoscalar mass itself,

σm(x,L) ≡ mPS(mh, L)

mPS(mh, L/s)
, (2.4)

is of central importance. Starting from the experimentally determined mass, mBs =

5.3675(18)GeV and LN large enough, it serves to locate the physical points xi via

xN = 1/(LNmBs) , xi−1 = s σm(xi, Li)xi . (2.5)

The numerical results of all step scaling functions have to be evaluated at these points.

Eq. (2.1) is then rewritten as

O(mh, L∞) = O(mh, L0)σO(x1, L1) · · · σO(xN , LN ) . (2.6)

Increasing i in eq. (2.5) successively, the computation of the step scaling functions in the

relativistic theory at the physical mass requires lattice resolutions Li/a which become larger

by a factor s in each step. This is not affordable in practice. Thus the idea of [21, 22] was

to compute σO(x,Li) for a range of x (and thus quark masses) such that x ≥ sixi ≈ x0

and to extrapolate x → xi. In other words in each step (starting from L0) the maximal

quark mass which is simulated is reduced by about a factor s. As expected from the fact

that everywhere one is in the situation x ≪ 1, and the slopes in these extrapolations are

of order one or smaller,2 the extrapolations could thus be carried out. For an illustration

2Note that in a small volume L ≤ 1/ΛQCD the natural expansion parameter for the large mass expansion

is x = 1/(L mPS(mh, L)), since 1/L is the largest mass-scale (apart from mh) in the system. On the

other hand when L is significantly smaller than 1/ΛQCD one is in the region where finite size effects are

exponentially small and the functions σO remain close to one for that reason. From our results we observe

that the slopes in σO(x,L) are maximal around L = L2 (for L > L2, figure 3 shows no data but the slopes

would very quickly drop due to the exponentially small finite size effects).
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of the x-dependence as it comes out in practice, one may look ahead at our final results,

figure 3.

Our main point in this paper is that these extrapolations can be turned into interpo-

lations by computing the limiting behavior for small x directly in HQET,

σO(x,L) = σ
(0)
O (L) + O(x) . (2.7)

As usual in QCD, this large mass expansion is accompanied by logarithms due to anomalous

dimensions in the effective theory; O(x) thus stands for at least one power of x accompanied

by powers of log(x). For σm, the lowest order term is predicted by the theory to be

one, while for the first order in x, a computation in the static approximation of HQET

(Lstat = ψhD0ψh) is required,

σm(x,L) = 1 + σstat
m (L)x+ O(x2) . (2.8)

The static term, which comes from the O(1/(Lmh)2) term in eq. (2.2), is not accompanied

by logarithms, see section 3.2. For the case of the decay constant already the lowest order

term is given by a non-perturbative computation in the static approximation,

σ
(0)
f (L) = σstat

f (L) . (2.9)

As a further application of this method we compute the mass of the b-quark starting

from the physical meson mass mBs . To this end we define the ratio

ρ(x,L) ≡ mPS(mh, L)

Mh
(2.10)

of the meson mass to the renormalization group invariant (RGI) quark mass, Mh (see

e.g. [25] for its definition). It provides the connection

Mb =
mBs

ρ(x0, L0)σm(x1, L1) . . . σm(xN , LN )
. (2.11)

between the physics input mBs and the RGI b-quark mass.

Note that the only approximation made in the above equations is to neglect finite size

effects in the volume of linear extent LN .

3. Finite volume observables

3.1 Relativistic QCD

Suitable finite volume observables are defined in the QCD Schrödinger functional [26, 27]

with a space-time topology L3 × T , where T = 2L and C = C ′ = 0 is chosen for the

boundary gauge fields, and θ = 0 for the phase in the spatial quark boundary conditions.

The O(a)-improved [28 – 32] heavy-light correlation functions fA(t), fP(t) and f1 are

defined and renormalized as in [21]. They are illustrated in figure 1. They allow to define

– 4 –
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Figure 1: The boundary to axial-current correlator fA and the boundary to boundary correlator

f1. Dirichlet boundary conditions are imposed at x0 = 0 and x0 = T .

a finite volume pseudoscalar meson decay constant and mass via [33, 34]

FPS(mh, L) =
−2

√

L3mPS(mh, L)

fA(T/2)√
f1

, (3.1)

mPS(mh, L) =
1

2a
[ln(fA(T/2 − a)) − ln(fA(T/2 + a))] . (3.2)

We remind the reader that we have a fixed ratio T/L = 2. Therefore the time separation

in the correlation functions grows when L grows. Indeed, as discussed in detail in [33],

these quantities approach the physical ones in the large L limit,

lim
L→∞

mPS(mb, L) = mBs , lim
L→∞

FPS(mb, L) = FBs . (3.3)

with corrections which (asymptotically) are exponentially small in L. The associated step

scaling functions are defined as

σf(x,L) =
FPS(mh, L)

√

mPS(mh, L)

FPS(mh, L/s)
√

mPS(mh, L/s)
, x =

1

LmPS(mh, L)
, (3.4)

and σm as in eq. (2.4).

3.2 HQET

In the static approximation of HQET, unrenormalized correlation functions f stat
A and f stat

1

are defined in complete analogy to the relativistic ones [17] (see [5] for an introduction).

As in these references, we use the RGI static axial current, related to the bare one by a

factor Zstat
A,RGI. It serves to define the RGI ratio ,

YRGI(L) = Zstat
A,RGI

f stat
A (T/2)

√

f stat
1 (L)

, (3.5)

which is related to the QCD decay constant FPS via

FPS(mh, L)
√

L3mPS(mh, L) = −2CPS(Mh/ΛMS) × YRGI(L) + O(x) . (3.6)

– 5 –
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The function CPS(Mh/ΛMS), discussed in [35, 36], originates from the matching of QCD

and the effective theory. In its numerical evaluation we use the anomalous dimension,

γPS in the notation of [36]. With the 3-loop term extracted from [37] its uncertainty is

estimated to be negligible [36] compared to our other errors. Just like Zstat
A,RGI, it is needed

only for FPS(mh, L0); it cancels out in the step scaling functions.

The pseudoscalar finite volume mass has an HQET expansion [17]

mPS(mh, L) = mh + δm + Γstat(L) + O(1/mh) , (3.7)

with

Γstat(L) =
1

2a
[ln(f stat

A (T/2 − a)) − ln(f stat
A (T/2 + a))] , (3.8)

where again we do not need to specify the renormalization scheme for mh, but it is impor-

tant that the counterterm δm cancels the linear divergence in Γstat and the combination

δm + Γstat(L) is of order ΛQCD. Inserting eqs. (3.6), (3.7) into eqs. (3.4), (2.4), we arrive

at eqs. (2.9), (2.8) with the static step scaling functions

σstat
f (L) =

1

s3/2

YRGI(L)

YRGI(L/s)
, (3.9)

σstat
m (L) = L [Γstat(L) − Γstat(L/s)] . (3.10)

Here the renormalizations Zstat
A,RGI ×CPS and δm cancel, which shows that these static step

scaling functions are not accompanied by any logarithmic terms (in mh or x).

In our numerical investigation we will compute them precisely by using the static

action denoted by HYP2 in [38] (see also [39]), and the corresponding O(a)-improvement

coefficients for the static axial current.

4. Results in the quenched approximation

We employ the non-perturbatively O(a)-improved Wilson action [29, 31]. The data at

finite heavy quark mass are taken from [21, 22]. As there, we choose N = 2 steps, s = 2

and L0 = 0.4 fm. The length scale is set by r0 = 0.5 fm [40] using the parametrizations

of r0/a as a function of the bare coupling g0 from [41, 42]. The light quark mass is set

to the strange quark mass by fixing the RGI-mass to Ms = 0.1346(55)GeV as previously

determined from the Kaon mass in the quenched approximation [43]. The RGI-mass is

related to the bare one by a non-perturbatively computed renormalization factor Zm [25],

see e.g. [21] for details.

4.1 At finite heavy quark mass

The data of [21, 22] have been reanalyzed. The step scaling functions were first defined at a

fixed value of r0Mh as in those references. Their continuum limit was taken by an extrapo-

lation linear in (a/L)2, making use of different definitions of Mh at finite lattice spacing and

of the fact that the continuum limit is independent of such details. Correlations between

observables computed on the same gauge configurations were taken into account. The sta-

tistical uncertainties of the regularization dependent part of the renormalization constants

– 6 –
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L[ fm] x σm(x,L) σf(x,L)

1.6 0.0581 1.069(5) 0.929(32)

0.0670 1.081(6) 0.912(27)

0.0720 1.087(7) 0.900(24)

0.8 0.0804 1.012(6) 0.4198(45)

0.0884 1.014(6) 0.4193(45)

0.1204 1.018(8) 0.4169(43)

ρ(x,L) ϕ(x,L)

0.4 0.0933 0.744(09) 3.120(45)

0.0990 0.754(09) 3.097(45)

0.1472 0.837(12) 2.911(43)

0.2768 - 2.534(40)

0.2885 - 2.505(40)

Table 1: Finite mass observables after continuum extrapolation. Physical units are set through

r0 = 0.5 fm. Statistical errors of x due to mPS have been changed to errors in the x-dependent

observables.

and the lattice spacing were included before performing the continuum limit extrapolations,

the uncertainty of the regularization independent part of the renormalization constants is

added in the continuum limit; all these do not appear as a separate uncertainties, rather

they are included in the quoted errors. For their detailed accumulation we refer to [44].

An impression on the quality of the continuum extrapolations is easily obtained from the

graphs in [21, 22, 44]. Since here our emphasis is on the use of the static approximation,

we do not reproduce those details. The continuum values of the step scaling functions were

then interpolated in the pseudoscalar mass to a few selected values of x. These are listed

in table 1 together with ρ, eq. (2.10) and

ϕ(x,L) = L3/2FPS
√
mPS . (4.1)

4.2 In static approximation

We turn to the main new element in our numerical computations. We start with the static

step scaling function σstat
m (L2), requiring the computation of Γstat(L1) and Γstat(L2), for

several fixed values of g0 followed by a continuum extrapolation. However, it is a central

element of our strategy that L2 ≈ 1.6 fm is large enough such that finite volume effects are

negligible. Thus we can replace Γstat(L2) by Estat, the “mass” of a static-strange bound

state in large volume which is known from [19, 45, 46] in the range 6.0219 ≤ β = 6/g2
0 ≤

6.4956. We have computed Γstat(L1) for L/a = 8, 10, 12, 16, 24, spanning a wider range in

β and allowing easily for an interpolation to the values of β where Estat is known. All of

this was done for the HYP2 static action [38] and for the tree-level as well as the one-loop

– 7 –
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L1/a β aΓstat(L1) aΓstat(L2) σstat
m (L2)

8 5.9598 0.3183(8)

8.92 6.0219 0.3000(5) 0.4053(49) 1.878(88)

10 6.0914 0.2805(6)

12 6.2110 0.2533(6)

13.41 6.2885 0.2360(5) 0.3011(33) 1.745(89)

16 6.4200 0.2114(7)

16.64 6.4500 0.2067(6) 0.2564(09) 1.654(35)

17.64 6.4956 0.1997(6) 0.2461(14) 1.637(54)

24 6.7370 0.1722(16)

continuum 1.561(53)

Table 2: Numerical results in static approximation for L1 = 0.8 fm , L2 = 2L1. The rows with non-

integer L1/a list interpolated values for aΓstat(L1), while aΓstat(L2) are the large volume numbers

of [19, 45, 46].

L0/a β aΓstat(L0) aΓstat(L1) σstat
m (L1) Y (L0) Y (L1) σstat

f (L1)

6 6.2110 0.2272(9) 0.2558(18) 0.343(24) -1.805(03) -2.221(13) 0.4350(27)

8 6.4200 0.1958(9) 0.2154(11) 0.315(23) -1.837(05) -2.266(13) 0.4361(26)

12 6.7370 0.1561(8) 0.1663(17) 0.245(46) -1.881(06) -2.279(28) 0.4284(55)

16 6.9630 0.1355(7) 0.1426(14) 0.230(50) -1.899(07) -2.344(35) 0.4366(67)

24 7.3000 -1.918(10)

continuum 0.233(36) 0.4337(44)

Table 3: Numerical results in static approximation for L0 = 0.4 fm and L1 = 2L0.

L0

a β Zstat
A (L0

a , g0)
L1

a β Zstat
A (L1

a , g0)

8 6.4200 0.8745(21) 12 6.2110 0.7904(38)

12 6.7370 0.8534(10) 16 6.4200 0.7672(45)

16 6.9630 0.8408(21) 24 6.7370 0.7651(53)

24 7.3000 0.8308(21) 32 6.9630 0.7556(48)

Table 4: Renormalization factors for the static axial current at renormalization scales µ = 1/L0

and µ = 1/L1 with L0 = 0.4 fm and L1 = 0.8 fm.

improved static-light axial current. Differences between the two turned out to be far below

our statistical precision of order 1 − 3MeV. The continuum extrapolation of σstat
m (L2),

listed in table 2, is well controlled, see figure 2.

Similarly we profit from previous work in large volume in the computation of σstat
f (L2),

– 8 –
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Figure 2: Continuum extrapolations of static results. The extrapolated values with their errors

are shown at a/L = 0.

eq. (3.9). In that case the continuum value

YRGI(L2) = −4.65(19) , (4.2)

is known from [45, 46]. It remains to compute

YRGI(L1) =
ΦRGI

ΦSF(µ)
× Zstat

A (L′/a, g0) × Y (L1/a, g0) , L′ = 1/µ . (4.3)

Here

Y (L/a, g0) =
f stat
A (L)

√

f stat
1 (L)

(4.4)

is the unrenormalized version of eq. (3.5) and Zstat
A (L′/a, g0) is the factor, introduced in [35],

to renormalize the static axial current in the (“new”) SF scheme, non-perturbatively at

renormalization scale µ = 1/L′. Finally ΦRGI

ΦSF(µ) relates any matrix element of the axial

current in the chosen SF scheme and at renormalization scale µ to the RGI matrix element.

At the convenient renormalization point µ = 1/L′ = 1/L1 its non-perturbative value

ΦRGI

ΦSF(1/L1)
= 0.928(2) (4.5)

is easily extracted from the results in [35]. We have computed the missing factors

Zstat
A (L′/a, g0) , Y (L1/a, g0) for various values of L1/a, setting L′ = L1, see table 4. Note

that following the exact definition of [35], θ = 1/2 , T = L′ is employed for Zstat
A and the

computation is carried out at zero (light) quark mass — in contrast to the evaluation of Y

(and all other quantities).

– 9 –
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i σm(xi, Li) σf(xi, Li) Fit

2 1.0330(11) 1.0258(21) 0.985(31) quadratic

2 1.0319(11) 1.0276(22) 0.977(29) 1.002(54) linear

1 1.0092(18) 1.0074(33) 0.4243(36) quadratic

1 1.0093(15) 1.0072(32) 0.4260(31) 0.4223(48) linear

Table 5: Step scaling functions inter/extra-polated to the physical points x2 = 0.022974(8), x1 =

0.04746(5) and xQCD
1 = 0.04741(10), where the latter originates from the fits to only the finite heavy

quark mass data. The left-side column of each σ is the number including the static constraint, the

right-side one is without. The numbers in italics are selected for the further analysis.

The continuum limit (figure 2)

YRGI(L1) = −1.628(19) (4.6)

is combined with (4.2) to get

σstat
f (L2) = 1.010(43). (4.7)

In the computation of the static step scaling functions σstat(L1) (table 3, figure 2) we

followed straightforwardly their definitions. Finally,

ΦRGI

ΦSF(1/L0)
= 0.846(6) . (4.8)

from [35] together with Y (L0/a, g0) , Z
stat
A (L0/a, g0), tables 3 and 4, yields

YRGI(L0) = −1.347(13) (4.9)

by a continuum extrapolation again illustrated in figure 2.

4.3 Interpolation to the physical point

We now combine the static results with the relativistic ones, through linear and quadratic

interpolations in x. Namely we fit for the parameters mj(Li) and ej(Li) in

σm(x,Li) = 1 +m1(Li)x+m2(Li)x
2 , (4.10)

σstat
m (Li) = m1(Li) , (4.11)

σf(x,Li) = e0(Li) + e1(Li)x+ e2(Li)x
2 , (4.12)

and then insert the fit functions eq. (4.10) and eq. (4.12) into eq. (2.11) and eq. (4.13).

Note that the first two equations are fit together. The static σstat
m (Li) enter eq. (4.11) as

data points and σstat
f (Li) are data at x = 0 in eq. (4.12). As seen in figure 2, the quadratic

terms are moderate in the whole range and in particular at the physical points xi the

differences between the static results and the interpolated ones are rather small. As an

illustration of the effect of the static results we also carry out an analysis where they are

not taken into account. The numbers in table 5 show that the statistical errors in the step
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Figure 3: Interpolations to the physical points are shown by the filled circles. For σm, the static

constraints are illustrated as the error band of the static result 1 + σstat
m x. On the right hand side,

the static results enter as data points at x = 0.

scaling functions are significantly reduced by including the static constraints. Furthermore

we can perform the consistency check of including quadratic terms only when the static

constraints are used. The agreement between linear and quadratic interpolations is very

reassuring.

For ρ(x,L0) and FPS(x,L0) the relativistic simulations straddle the physical point

x = x0 and, for the decay constant, the static data do not sensitively improve the precision

on the interpolated point. However, as an illustration how HQET does describe these

quantities, we also show eq. (4.9) together with the data at finite x in figure 3; in that case

the interpolation yields L
3/2
0 FPS

√
mPS/(2CPS) = 1.279(17) or ϕ(x0, L0) = 3.107(41) and

ρ(x0, L0) = 0.7485(9).

Our final large volume results from eq. (2.11) and

FBs = ϕ(x0, L0)σf(x1, L1)σf(x2, L2)L
−3/2
0 m

−1/2
Bs

(4.13)

are

FBs = 191(6)MeV , Mb = 6.88(10)GeV =⇒ mb(mb) = 4.42(6)GeV . (4.14)

Here the conversion to the running mass in the MS-scheme is done with the 4-loop RG

equations (for Nf = 0 and Λ
(0)

MS
= 238(19)MeV [25]).

5. Conclusions and outlook

We have followed a general strategy for computing B-meson observables. Starting from a

finite volume, where the observables are straightforwardly computable in relativistic lattice
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QCD, we evaluated step scaling functions which describe the finite size effects. The latter

are not directly computable at the physical points since for accessible lattices amb ≥ 1.

Previously these functions have either been computed by an extrapolation in the heavy

quark mass to the physical mb [21, 22] or they have been computed in HQET [17, 19].

Here we have demonstrated how the two approaches can be combined to further increase

precision and confidence in the results.

Figure 3, which is a continuum graph, shows that the static (lowest order HQET)

results match very well onto the finite mass step scaling functions. We therefore have

excellent control over the heavy quark mass dependence – if desired from below the charm

quark mass to the b-quark mass and beyond.

Our final numbers for decay constant and b-quark mass, eq. (4.14), agree well with

the previous estimates of [21, 22, 19, 45, 46] where the same experimental data was used

as input.3

In our results, figure 3, one notices that the corrections to the static approximation

are very small at the b-quark mass. This represents an intriguing demonstration of the

precision and usefulness of HQET for B-physics. Although our exercise was in the quenched

approximation, such a qualitative result may well be carried over to (full) QCD.

Concerning the application of the strategy to QCD, the attentive reader will have

noticed that in our computations we extensively relied on the knowledge of a reference scale

(r0/a) over a large range of lattice spacings a. This luxury is not available in full QCD —

and will not be for a while to come. However, with the knowledge of the running coupling

of [47], one can properly set the scale also for small lattice spacings. We further note that

the finite volume computations which are needed in this strategy require a significantly

smaller effort than the large volume ones.

We therefore conclude that the here investigated method is very promising for the near

future where we expect that high precision can be reached for B-physics. Note that the

strategy may be extended to other observables such as mass splittings [48, 49] and form

factors [50].
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